1. 개념
심층 학습(深層學習) 또는 딥 러닝(영어: deep structured learning, deep learning 또는 hierarchical learning)은 여러 비선형 변환기법의 조합을 통해 높은 수준의 추상화(abstractions, 다량의 데이터나 복잡한 자료들 속에서 핵심적인 내용 또는 기능을 요약하는 작업)를 시도하는 기계 학습 알고리즘의 집합으로 정의
2. 왜 다시 딥 러닝인가?
딥 러닝이 부활하게 된 이유는 크게 세 가지로 꼽힌다. 첫 번째는 앞서 딥 러닝의 역사에서 언급한 바 있는 기존 인공신경망 모델의 단점이 극복되었다는 점이다. 그러나 과적합 문제만 해결되었다고 해서 느린 학습시간이 줄어드는 것은 아니다. 두 번째 이유로, 여기에는 하드웨어의 발전이라는 또다른 요인이 존재 한다. 특히 강력한 GPU는 딥 러닝에서 복잡한 행렬 연산에 소요되는 시간을 크게 단축시켰다. 마지막으로 언급하지만 가장 중요한 세 번째 이유로 빅 데이터를 들 수 있다. 대량으로 쏟아져 나오는 데이터들, 그리고 그것들을 수집하기 위한 노력 특히 SNS 사용자들에 의해 생산되는 다량의 자료와 태그정보들 모두가 종합되고 분석 되어 학습에 이용될 수 있다. - 인공신경망의 학습에 사용되는 트레이닝벡터는 이름이 붙어 있는(labeled) 데이터여야 하는데(supervised learning의 경우) 대량의 트레이닝셋 모두에 label을 달아주는 일은 불가능한 일이다. 이런 이유로 초기 학습에 사용되는 일부 데이터에 대해서만 지도학습(supervised learning)을 수행하고 나머지 트레이닝셋에 대해서는 비지도학습(unsupervised learning)을 진행하며, 학습된 결과는 기존 학습의 결과와 앞서 분석된 메타태그 정보들을 종합하여 인식기가 완성 된다.
딥 러닝의 부활 이후 다양한 분야, 특히 자동 음성 인식(ASR, automatic speech recognition)과 컴퓨터비전 분야에서 최고수준의 성능을 보여주고 있으며 이들은 보통 딥 러닝의 새로운 응용들의 지속적인 성능 향상을 위해 만들어진 TIMIT(Texas Instruments와 MIT가 제작한 음성 Database), MNIST(이미지 클러스터링을 위한 hand-written 숫자 이미지 데이터베이스로 National Institute of Standards and Technology가 제작) 등의 데이터베이스를 사용했다. 최근에는 Convolution Neural Networks 기반의 딥 러닝 알고리즘이 뛰어난 성능을 발휘하고 있으며, 컴퓨터비전과 음성인식등의 분야에서 특히 탁월한 성능을 보이고 있다.
3. 응용
자동 음성 인식
자동 음성 인식 분야의 2014년 10월까지의 최신 동향은 마이크로소프트 리서치의 책 에 잘 정리되어있다. 또한 자동 음성인식과 관련된 배경 지식과 다양한 기계학습 패러다임의 영향을 잘 정리한 글을 참고할 수 있다.
대용량 자동 음성인식은 최근 딥 러닝의 역사에서 산업계와 학계를 모두 아우르는 처음이자 가장 성공적인 케이스라고 할 수 있다. 2010년부터 2014년까지, 신호처리와 음성인식에 대한 주요 학술회의인 IEEE-ICASSP와 Interspeech는 음성인식을 위한 딥 러닝 분야의 합격 논문 개수에 있어서 거의 기하급수적인 성장을 보여주었다. 더 중요한 것은, 현재 모든 주요 상업 음성인식 시스템(MS 코타나, 스카이프 번역기, 구글 나우, 애플 시리 등등)이 딥 러닝 기법에 기반하고있다는 점이다
영상 인식
일반적으로 이미지 분류를 위한 평가 데이터로서 MNIST 데이터베이스 데이터가 이용된다. MNIST는 손으로 쓴 숫자들로 구성되어 있으며, 60000개의 학습 예제들과 10000개의 테스트 예제들을 포함한다. TIMIT와 유사하게, 적은 용량의 MNIST 데이터는 복수의 테스트 환경설정이 가능하게 해준다. MNIST 데이터에 대한 종합적인 결과들을 [123]에서 확인할 수 있다. 현재까지 MNIST 데이터에 대한 가장 우수한 결과는 Ciresan 등이 작성에서 달성되었으며, 오차율 0.23%를 기록했다.
제프리 힌튼과 그의 제자들은 2012년 가을에 대규모 ImageNet 대회에서 당시 최신 기계 학습 방법들의 성능을 훌쩍 뛰어넘는 결과를 보여주며 우승하였다. 이로 인해 컴퓨터 비전의 주요 분야인 영상 인식 및 사물 인식 분야에서의 딥 러닝의 중요성이 대두되었다. 그 당시, 대규모 음성인식에 딥 러닝이 상당히 잘 작동한다는 것을 알고 있었던 그들은, 20년 전에 고안된 심층 합성곱 신경망 구조를 대규모 작업에 맞도록 대규모로 사용하였다. 2013년부터 2014년에 이르기까지, 딥 러닝을 이용한 ImageNet 과제 결과의 오차율은 대규모 음성인식 분야와 추세를 같이하며 빠르게 줄어나갔다.
자동 음성인식 분야의 자동 음성 번역 및 이해 분야로의 확장과 마찬가지로, 이미지 분류 분야는 자동 영상 캡션닝(captioning)이라는 더욱 도전적인 분야로 확장되었다. 자동 영상 캡셔닝은 딥 러닝을 핵심 기반 기술로 사용하는 분야이다.
적용 사례로는 360°카메라 화면을 이해할 수 있도록 딥 러닝을 통해 학습된 자동차 탑재용 컴퓨터 등이 있다.
자연어 처리
2000년대 초부터 인공신경망은 언어 모형을 구현하기 위해 사용되어 왔다. 이 분야에서의 핵심 기법은 negative sampling과 단어 표현(word embedding)이다. word2vec과 같은 단어 표현은 데이터집합으로 주어진 단어들 사이의 관계를 학습하는 인공신경망을 이용하여 단어를 벡터 공간 상에 나타내는 것이라고 할 수 있다. 단어표현을 재귀 신경망(recursive neural network)의 입력 계층으로 이용하면 해당 신경망이 compositional vector grammar를 통해 문장과 구(phrase)를 분석하도록 학습시킬 수 있다. 이 compositional vector grammar는 재귀 신경망으로 구현된 probabilistic context free grammar (PCFG) 라고 할 수 있다. 단어표현을 기반으로 구성된 Recursive autoencoder는 문장 간의 유사도 판단과 의역 탐지를 하도록 훈련이 가능하다. 이러한 심층 인공신경망 구조들은 자동 번역(machine translation), 감정 분석(sentiment analysis), 정보 검색(information retrieval)을 비롯한 다양한 자연언어처리 관련 연구에서 최첨단 기술로서 쓰이고 있다.
'IT 정보 > IT 용어' 카테고리의 다른 글
정적 페이지 vs 동적 페이지 (0) | 2022.10.06 |
---|---|
WEB Server, WAS (1) | 2022.10.05 |
애플 페이 (0) | 2022.09.16 |
'코볼 컬리그' - 초보 메인프레임 개발자를 위한 검색 AI 툴 (0) | 2022.09.16 |
딥러닝 프레임워크 (2) | 2022.09.08 |
댓글